Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.706
Filtrar
1.
BMC Cancer ; 24(1): 399, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561690

RESUMO

BACKGROUND: Podoplanin (PDPN) expressed on tumour cells interacts with platelet C-type lectin-like receptor 2 (CLEC-2). This study aimed to investigate the role of the PDPN-platelet CLEC-2 interaction in melanoma pulmonary metastasis. METHODS: Murine melanoma B16-F0 cells, which have two populations that express podoplanin, were sorted by FACS with anti-podoplanin staining to obtain purified PDPN + and PDPN- B16-F0 cells. C57BL/6J mice transplanted with CLEC-2-deficient bone marrow cells were used for in vivo experiments. RESULTS: The in vivo data showed that the number of metastatic lung nodules in WT mice injected with PDPN + cells was significantly higher than that in WT mice injected with PDPN- cells and in WT or CLEC-2 KO mice injected with PDPN- cells. In addition, our results revealed that the platelet Syk-dependent signalling pathway contributed to platelet aggregation and melanoma metastasis. CONCLUSIONS: Our study indicates that the PDPN-CLEC-2 interaction promotes experimental pulmonary metastasis in a mouse melanoma model. Tumour cell-induced platelet aggregation mediated by the interaction between PDPN and CLEC-2 is a key factor in melanoma pulmonary metastasis.


Assuntos
Neoplasias Pulmonares , Melanoma , Animais , Camundongos , Plaquetas/metabolismo , Lectinas Tipo C/metabolismo , Neoplasias Pulmonares/metabolismo , Melanoma/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Agregação Plaquetária
2.
Immunity ; 57(4): 700-717, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599166

RESUMO

C-type lectin receptors (CLRs) expressed by myeloid cells constitute a versatile family of receptors that play a key role in innate immune recognition. Myeloid CLRs exhibit a remarkable ability to recognize an extensive array of ligands, from carbohydrates and beyond, and encompass pattern-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and markers of altered self. These receptors, classified into distinct subgroups, play pivotal roles in immune recognition and modulation of immune responses. Their intricate signaling pathways orchestrate a spectrum of cellular responses, influencing processes such as phagocytosis, cytokine production, and antigen presentation. Beyond their contributions to host defense in viral, bacterial, fungal, and parasitic infections, myeloid CLRs have been implicated in non-infectious diseases such as cancer, allergies, and autoimmunity. A nuanced understanding of myeloid CLR interactions with endogenous and microbial triggers is starting to uncover the context-dependent nature of their roles in innate immunity, with implications for therapeutic intervention.


Assuntos
Lectinas Tipo C , Neoplasias , Humanos , Lectinas Tipo C/metabolismo , Imunidade Inata , Células Mieloides/metabolismo , Transdução de Sinais , Neoplasias/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo
3.
Mol Med Rep ; 29(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639174

RESUMO

Macrophage­inducible C­type lectin receptor (Mincle) is predominantly found on antigen­presenting cells. It can recognize specific ligands when stimulated by certain pathogens such as fungi and Mycobacterium tuberculosis. This recognition triggers the activation of the nuclear factor­κB pathway, leading to the production of inflammatory factors and contributing to the innate immune response of the host. Moreover, Mincle identifies lipid damage­related molecules discharged by injured cells, such as Sin3­associated protein 130, which triggers aseptic inflammation and ultimately hastens the advancement of renal damage, autoimmune disorders and malignancies by fostering tissue inflammation. Presently, research on the functioning of the Mincle receptor in different inflammatory and fibrosis­associated conditions has emerged as a popular topic. Nevertheless, there remains a lack of research on the impact of Mincle in promoting long­lasting inflammatory reactions and fibrosis. Additional investigation is required into the function of Mincle receptors in chronological inflammatory reactions and fibrosis of organ systems, including the progression from inflammation to fibrosis. Hence, the present study showed an overview of the primary roles and potential mechanism of Mincle in inflammation, fibrosis, as well as the progression of inflammation to fibrosis. The aim of the present study was to clarify the potential mechanism of Mincle in inflammation and fibrosis and to offer perspectives for the development of drugs that target Mincle.


Assuntos
Inflamação , Mycobacterium tuberculosis , Animais , Camundongos , Inflamação/metabolismo , Imunidade Inata , Mycobacterium tuberculosis/metabolismo , NF-kappa B , Fibrose , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Camundongos Endogâmicos C57BL
4.
Front Immunol ; 15: 1366096, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596689

RESUMO

Background: The tumor microenvironment (TME) plays a pivotal role in the progression and metastasis of lung adenocarcinoma (LUAD). However, the detailed characteristics of LUAD and its associated microenvironment are yet to be extensively explored. This study aims to delineate a comprehensive profile of the immune cells within the LUAD microenvironment, including CD8+ T cells, CD4+ T cells, and myeloid cells. Subsequently, based on marker genes of exhausted CD8+ T cells, we aim to establish a prognostic model for LUAD. Method: Utilizing the Seurat and Scanpy packages, we successfully constructed an immune microenvironment atlas for LUAD. The Monocle3 and PAGA algorithms were employed for pseudotime analysis, pySCENIC for transcription factor analysis, and CellChat for analyzing intercellular communication. Following this, a prognostic model for LUAD was developed, based on the marker genes of exhausted CD8+ T cells, enabling effective risk stratification in LUAD patients. Our study included a thorough analysis to identify differences in TME, mutation landscape, and enrichment across varying risk groups. Moreover, by integrating risk scores with clinical features, we developed a new nomogram. The expression of model genes was validated via RT-PCR, and a series of cellular experiments were conducted, elucidating the potential oncogenic mechanisms of GALNT2. Results: Our study developed a single-cell atlas for LUAD from scRNA-seq data of 19 patients, examining crucial immune cells in LUAD's microenvironment. We underscored pDCs' role in antigen processing and established a Cox regression model based on CD8_Tex-LAYN genes for risk assessment. Additionally, we contrasted prognosis and tumor environments across risk groups, constructed a new nomogram integrating clinical features, validated the expression of model genes via RT-PCR, and confirmed GALNT2's function in LUAD through cellular experiments, thereby enhancing our understanding and approach to LUAD treatment. Conclusion: The creation of a LUAD single-cell atlas in our study offered new insights into its tumor microenvironment and immune cell interactions, highlighting the importance of key genes associated with exhausted CD8+ T cells. These discoveries have enabled the development of an effective prognostic model for LUAD and identified GALNT2 as a potential therapeutic target, significantly contributing to the improvement of LUAD diagnosis and treatment strategies.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Linfócitos T CD8-Positivos , Nomogramas , Neoplasias Pulmonares/genética , Microambiente Tumoral , Lectinas Tipo C
5.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612837

RESUMO

Hashimoto's thyroiditis (HT) and Graves' disease (GD) are common autoimmune endocrine disorders in children. Studies indicate that apart from environmental factors, genetic background significantly contributes to the development of these diseases. This study aimed to assess the prevalence of selected single-nucleotide polymorphisms (SNPs) of Il7R, CD226, CAPSL, and CLEC16A genes in children with autoimmune thyroid diseases. We analyzed SNPs at the locus rs3194051, rs6897932 of IL7R, rs763361 of CD226, rs1010601 of CAPSL, and rs725613 of CLEC16A gene in 56 HT patients, 124 GD patients, and 156 healthy children. We observed significant differences in alleles IL7R (rs6897932) between HT males and the control group (C > T, p = 0.028) and between all GD patients and healthy children (C > T, p = 0.035) as well as GD females and controls (C > T, p = 0.018). Moreover, the C/T genotype was less frequent in GD patients at rs6897932 locus and in HT males at rs1010601 locus. The presence of the T allele in the IL7R (rs6897932) locus appears to have a protective effect against HT in males and GD in all children. Similarly, the presence of the T allele in the CAPSL locus (rs1010601) seems to reduce the risk of HT development in all patients.


Assuntos
Doenças Autoimunes , Doença de Graves , Doença de Hashimoto , Criança , Feminino , Masculino , Humanos , Adolescente , Prevalência , Alelos , Doença de Hashimoto/genética , Polimorfismo de Nucleotídeo Único , Doença de Graves/genética , Receptores de Interleucina-7/genética , Proteínas de Transporte de Monossacarídeos , Lectinas Tipo C/genética
6.
Cell Commun Signal ; 22(1): 237, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649988

RESUMO

BACKGROUND: A water-soluble ingredient of mature leaves of the tropical mahogany 'Neem' (Azadirachta indica), was identified as glycoprotein, thus being named as 'Neem Leaf Glycoprotein' (NLGP). This non-toxic leaf-component regressed cancerous murine tumors (melanoma, carcinoma, sarcoma) recurrently in different experimental circumstances by boosting prime antitumor immune attributes. Such antitumor immunomodulation, aid cytotoxic T cell (Tc)-based annihilation of tumor cells. This study focused on identifying and characterizing the signaling gateway that initiate this systemic immunomodulation. In search of this gateway, antigen-presenting cells (APCs) were explored, which activate and induce the cytotoxic thrust in Tc cells. METHODS: Six glycoprotein-binding C-type lectins found on APCs, namely, MBR, Dectin-1, Dectin-2, DC-SIGN, DEC205 and DNGR-1 were screened on bone marrow-derived dendritic cells from C57BL/6 J mice. Fluorescence microscopy, RT-PCR, flow cytometry and ELISA revealed Dectin-1 as the NLGP-binding receptor, followed by verifications through RNAi. Following detection of ß-Glucans in NLGP, their interactions with Dectin-1 were explored in silico. Roles of second messengers and transcription factors in the downstream signal were studied by co-immunoprecipitation, western blotting, and chromatin-immunoprecipitation. Intracellularization of FITC-coupled NLGP was observed by processing confocal micrographs of DCs. RESULTS: Considering extents of hindrance in NLGP-driven transcription rates of the cytokines IL-10 and IL-12p35 by receptor-neutralization, Dectin-1 receptors on dendritic cells were found to bind NLGP through the ligand's peripheral ß-Glucan chains. The resulting signal phosphorylates PKCδ, forming a trimolecular complex of CARD9, Bcl10 and MALT1, which in turn activates the canonical NFκB-pathway of transcription-regulation. Consequently, the NFκB-heterodimer p65:p50 enhances Il12a transcription and the p50:p50 homodimer represses Il10 transcription, bringing about a cytokine-based systemic-bias towards type-1 immune environment. Further, NLGP gets engulfed within dendritic cells, possibly through endocytic activities of Dectin-1. CONCLUSION: NLGP's binding to Dectin-1 receptors on murine dendritic cells, followed by the intracellular signal, lead to NFκB-mediated contrasting regulation of cytokine-transcriptions, initiating a pro-inflammatory immunopolarization, which amplifies further by the responding immune cells including Tc cells, alongside their enhanced cytotoxicity. These insights into the initiation of mammalian systemic immunomodulation by NLGP at cellular and molecular levels, may help uncovering its mode of action as a novel immunomodulator against human cancers, following clinical trials.


Assuntos
Azadirachta , Proteínas Adaptadoras de Sinalização CARD , Células Dendríticas , Lectinas Tipo C , Camundongos Endogâmicos C57BL , NF-kappa B , Folhas de Planta , Transdução de Sinais , Animais , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Azadirachta/química , Camundongos , Proteínas Adaptadoras de Sinalização CARD/metabolismo , NF-kappa B/metabolismo , Ligação Proteica
7.
Front Immunol ; 15: 1383110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650930

RESUMO

Exhausted CD8 T cells (TEX) are associated with worse outcome in cancer yet better outcome in autoimmunity. Building on our past findings of increased TIGIT+KLRG1+ TEX with teplizumab therapy in type 1 diabetes (T1D), in the absence of treatment we found that the frequency of TIGIT+KLRG1+ TEX is stable within an individual but differs across individuals in both T1D and healthy control (HC) cohorts. This TIGIT+KLRG1+ CD8 TEX population shares an exhaustion-associated EOMES gene signature in HC, T1D, rheumatoid arthritis (RA), and cancer subjects, expresses multiple inhibitory receptors, and is hyporesponsive in vitro, together suggesting co-expression of TIGIT and KLRG1 may broadly define human peripheral exhausted cells. In HC and RA subjects, lower levels of EOMES transcriptional modules and frequency of TIGIT+KLRG1+ TEX were associated with RA HLA risk alleles (DR0401, 0404, 0405, 0408, 1001) even when considering disease status and cytomegalovirus (CMV) seropositivity. Moreover, the frequency of TIGIT+KLRG1+ TEX was significantly increased in RA HLA risk but not non-risk subjects treated with abatacept (CTLA4Ig). The DR4 association and selective modulation with abatacept suggests that therapeutic modulation of TEX may be more effective in DR4 subjects and TEX may be indirectly influenced by cellular interactions that are blocked by abatacept.


Assuntos
Abatacepte , Alelos , Artrite Reumatoide , Linfócitos T CD8-Positivos , Receptores Imunológicos , Humanos , Abatacepte/uso terapêutico , Abatacepte/farmacologia , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Artrite Reumatoide/genética , Masculino , Feminino , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Adulto , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Antígenos HLA/genética , Antígenos HLA/imunologia , Pessoa de Meia-Idade , Antirreumáticos/uso terapêutico , Predisposição Genética para Doença , Exaustão das Células T
8.
Front Immunol ; 15: 1370511, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596675

RESUMO

Introduction: SARS coronavirus 2 (SARS-CoV-2) infects human angiotensin-converting enzyme 2 (hACE2)-expressing lung epithelial cells through its spike (S) protein. The S protein is highly glycosylated and could be a target for lectins. Surfactant protein A (SP-A) is a collagen-containing C-type lectin, expressed by mucosal epithelial cells and mediates its antiviral activities by binding to viral glycoproteins. Objective: This study examined the mechanistic role of human SP-A in SARS-CoV-2 infectivity and lung injury in vitro and in vivo. Results: Human SP-A can bind both SARS-CoV-2 S protein and hACE2 in a dose-dependent manner (p<0.01). Pre-incubation of SARS-CoV-2 (Delta) with human SP-A inhibited virus binding and entry and reduced viral load in human lung epithelial cells, evidenced by the dose-dependent decrease in viral RNA, nucleocapsid protein (NP), and titer (p<0.01). We observed significant weight loss, increased viral burden, and mortality rate, and more severe lung injury in SARS-CoV-2 infected hACE2/SP-A KO mice (SP-A deficient mice with hACE2 transgene) compared to infected hACE2/mSP-A (K18) and hACE2/hSP-A1 (6A2) mice (with both hACE2 and human SP-A1 transgenes) 6 Days Post-infection (DPI). Furthermore, increased SP-A level was observed in the saliva of COVID-19 patients compared to healthy controls (p<0.05), but severe COVID-19 patients had relatively lower SP-A levels than moderate COVID-19 patients (p<0.05). Discussion: Collectively, human SP-A attenuates SARS-CoV-2-induced acute lung injury (ALI) by directly binding to the S protein and hACE2, and inhibiting its infectivity; and SP-A level in the saliva of COVID-19 patients might serve as a biomarker for COVID-19 severity.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Lectinas Tipo C , Proteína A Associada a Surfactante Pulmonar/genética , SARS-CoV-2
9.
Sci Rep ; 14(1): 7199, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532110

RESUMO

Development and progression of malignancies are accompanied and influenced by alterations in the surrounding immune microenvironment. Understanding the cellular and molecular interactions between immune cells and cancer cells has not only provided important fundamental insights into the disease, but has also led to the development of new immunotherapies. The C-type lectin Dendritic Cell ImmunoReceptor (DCIR) is primarily expressed by myeloid cells and is an important regulator of immune homeostasis, as demonstrated in various autoimmune, infectious and inflammatory contexts. Yet, the impact of DCIR on cancer development remains largely unknown. Analysis of available transcriptomic data of colorectal cancer (CRC) patients revealed that high DCIR gene expression is associated with improved patients' survival, immunologically "hot" tumors and high immunologic constant of rejection, thus arguing for a protective and immunoregulatory role of DCIR in CRC. In line with these correlative data, we found that deficiency of DCIR1, the murine homologue of human DCIR, leads to the development of significantly larger tumors in an orthotopic murine model of CRC. This phenotype is accompanied by an altered phenotype of tumor-associated macrophages (TAMs) and a reduction in the percentage of activated effector CD4+ and CD8+ T cells in CRC tumors of DCIR1-deficient mice. Overall, our results show that DCIR promotes antitumor immunity in CRC, making it an attractive target for the future development of immunotherapies to fight the second deadliest cancer in the world.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Colorretais , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Colorretais/metabolismo , Células Dendríticas , Imunidade , Lectinas Tipo C/metabolismo , Microambiente Tumoral
10.
Eur J Pharmacol ; 970: 176435, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38428663

RESUMO

Punicalagin (PUN) is a polyphenol derived from the pomegranate peel. It has been reported to have many beneficial effects, including anti-inflammatory, anti-oxidant, and anti-proliferation. However, the role of PUN in macrophage phagocytosis is currently unknown. In this study, we found that pre-treatment with PUN significantly enhanced phagocytosis by macrophages in a time- and dose-dependent manner in vitro. Moreover, KEGG enrichment analysis by RNA-sequencing showed that differentially expressed genes following PUN treatment were significantly enriched in phagocyte-related receptors, such as the C-type lectin receptor signaling pathway. Among the C-type lectin receptor family, Mincle (Clec4e) significantly increased at the mRNA and protein level after PUN treatment, as shown by qRT-PCR and western blotting. Small interfering RNA (siRNA) mediated knockdown of Mincle in macrophages resulted in down regulation of phagocytosis. Furthermore, western blotting showed that PUN treatment enhanced the phosphorylation of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) in macrophages at the early stage. Mincle-mediated phagocytosis by PUN was inhibited by PDTC (a NF-κB inhibitor) and SB203580 (a p38 MAPK inhibitor). In addition, PUN pre-treatment enhanced phagocytosis by peritoneal and alveolar macrophages in vivo. After intraperitoneal injection of Escherichia coli (E.coli), the bacterial load of peritoneal lavage fluid and peripheral blood in PUN pre-treated mice decreased significantly. Similarly, the number of bacteria in the lung tissue significantly reduced after intranasal administration of Pseudomonas aeruginosa (PAO1). Taken together, our results reveal that PUN enhances bacterial clearance in mice by activating the NF-κB and MAPK pathways and upregulating C-type lectin receptor expression to enhance phagocytosis by macrophages.


Assuntos
Taninos Hidrolisáveis , Macrófagos , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Transdução de Sinais , Fagocitose , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Antioxidantes/farmacologia , Lectinas Tipo C/metabolismo
11.
Biochem Biophys Res Commun ; 708: 149819, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38531221

RESUMO

Metastasis, which is the spread of cancer cells into distant organs, is a critical determinant of prognosis in patients with cancer, and blood vessels are the major route for cancer cells to spread systemically. Extravasation is a critical process for the hematogenous metastasis; however, its underlying molecular mechanisms remain poorly understood. Here, we identified that senescent ECs highly express C-type lectin domain family 1 member B (CLEC-1b), and that endothelial CLEC-1b inhibits the hematogenous metastasis of a certain type of cancer. CLEC-1b expression was enhanced in ECs isolated from aged mice, senescent cultured human ECs, and ECs of aged human. CLEC-1b overexpression in ECs prevented the disruption of endothelial integrity, and inhibited the transendothelial migration of cancer cells expressing podoplanin (PDPN), a ligand for CLEC-1b. Notably, target activation of CLEC-1b in ECs decreased the hematogenous metastasis in the lungs by cancer cells expressing PDPN in mice. Our data reveal the protective role of endothelial CLEC-1b against cancer hematogenous metastasis. Considering the high CLEC-1b expression in senescent ECs, EC senescence may play a beneficial role with respect to the cancer hematogenous metastasis.


Assuntos
Lectinas Tipo C , Neoplasias , Idoso , Animais , Humanos , Camundongos , Plaquetas/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Migração Transendotelial e Transepitelial
12.
J Med Chem ; 67(7): 5373-5390, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38507580

RESUMO

There is a need for improved vaccine adjuvants to augment vaccine efficacy. One way to address this is by targeting multiple immune cell pathogen recognition receptors (PRRs) using chimeric pathogen-associated molecular patterns (PAMPs). Conjugation of the PAMPs will ensure codelivery of the immunostimulatory molecules to the same cell, enhancing adjuvant activity. The macrophage inducible C-type lectin (Mincle) is a promising PRR for adjuvant development; however, no effective chimeric Mincle adjuvants have been prepared. We addressed this by synthesizing Mincle adjuvant conjugates, MDP-C18Brar and MDP-C18Brar-dilipid, which contain PAMPs recognized by Mincle and the nucleotide-binding oligomerization domain 2 (NOD2). The two PAMPs are joined by a pH-sensitive oxyamine linker which, upon acidification at lysosomal pH, hydrolyzed to release the NOD2 ligands. The conjugates elicited the production of Th1 and Th17 promoting cytokines in vitro, and when using OVA as a model antigen, exhibited enhanced T-cell-mediated immune responses and reduced toxicity in vivo, compared to the coadministration of the adjuvants.


Assuntos
Adjuvantes de Vacinas , Moléculas com Motivos Associados a Patógenos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Imunidade Celular , Citocinas , Antígenos , Receptores Imunológicos , Lectinas Tipo C
13.
Cell Stress Chaperones ; 29(2): 227-234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453000

RESUMO

Dendritic cells, macrophages, neutrophils, and other antigen-presenting cells express various C-type lectin receptors that function to recognize the glycans associated with pathogens. The dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) binds various pathogens such as HIV glycoprotein 120, the Ebola glycoprotein, hemagglutinin, and the dengue virus glycoprotein in addition to the SARS-CoV-2 spike protein, and also triggers antigen-presenting cell endocytosis and immune escape from systemic infections. Many studies on the binding of SARS-CoV-2 spike protein with glycans have been published, but the underlying mechanism by which intracellular signaling occurs remains unclear. In this study, we report that the S1 spike protein of SARS-CoV-2 induces the phosphorylation of extracellular signal-regulated kinases (ERKs) in THP-1 cells, a DC-SIGN-expressing human monocytic leukemic cell line. On the other hand, the phosphorylation level of NF-κB remained unchanged under the same conditions. These data suggest that the major cell signaling pathway regulated by the S1 spike protein is the ERK pathway, which is superior to the NF-κB pathway in these DC-SIGN-expressing THP-1 cells and may contribute to immune hyperactivation in SARS-CoV-2 infections. Additionally, several glycans such as mannans, mannosylated bovine serum albumin, the serum amyloid beta protein, and intracellular adhesion molecule 3 suppressed ERK phosphorylation, suggesting that these molecules are target molecules for SARS-CoV-2 infection by suppressing immune hyperactivation that occurs in the ERK signaling pathway.


Assuntos
COVID-19 , Receptores de Superfície Celular , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , NF-kappa B/metabolismo , SARS-CoV-2/metabolismo , Sistema de Sinalização das MAP Quinases , Células THP-1 , Peptídeos beta-Amiloides , COVID-19/metabolismo , Moléculas de Adesão Celular/metabolismo , Transdução de Sinais , Lectinas Tipo C/metabolismo , Polissacarídeos/metabolismo , Células Dendríticas/metabolismo
14.
Front Immunol ; 15: 1330677, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38433834

RESUMO

Introduction: Conventional foot-and-mouth disease (FMD) vaccines have been developed to enhance their effectiveness; however, several drawbacks remain, such as slow induction of antibody titers, short-lived immune response, and local side effects at the vaccination site. Therefore, we created a novel FMD vaccine that simultaneously induces cellular and humoral immune responses using the Dectin-2 agonist, D-galacto-D-mannan, as an adjuvant. Methods: We evaluated the innate and adaptive (cellular and humoral) immune responses elicited by the novel FMD vaccine and elucidated the signaling pathway involved both in vitro and in vivo using mice and pigs, as well as immune cells derived from these animals. Results: D-galacto-D-mannan elicited early, mid-, and long-term immunity via simultaneous induction of cellular and humoral immune responses by promoting the expression of immunoregulatory molecules. D-galacto-D-mannan also enhanced the immune response and coordinated vaccine-mediated immune response by suppressing genes associated with excessive inflammatory responses, such as nuclear factor kappa B, via Sirtuin 1 expression. Conclusion: Our findings elucidated the immunological mechanisms induced by D-galacto-D-mannan, suggesting a background for the robust cellular and humoral immune responses induced by FMD vaccines containing D-galacto-D-mannan. Our study will help to facilitate the improvement of conventional FMD vaccines and the design of next-generation FMD vaccines.


Assuntos
Adjuvantes de Vacinas , Lectinas Tipo C , Vacinas Virais , Animais , Camundongos , Suínos , Imunidade Humoral , Mananas , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos
15.
Int J Biol Macromol ; 264(Pt 1): 130546, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442833

RESUMO

ß-1,3-Glucans possess therapeutic potential owing to their ability to exhibit immunostimulating activity. ß-1,3-Glucans, isolated from various organisms, differ in their chemical structures, molecular weight, and branching degree, potentially forming particulate, helix, or random coil conformations in water. Therefore, this study used synthesized ß-1,3-glucan mimic polymers to investigate the difference in binding affinity for dectin-1 and induced cytokine productions based on polymer structures. The ß-1,3-glucan mimic polymers were synthesized using ß-1,3-glucan tetrasaccharyl monomer, with subsequent modifications to the polymer backbones through the introduction of hydrogen or a hydroxy group. Polymers with different structures in both ligands and polymer backbones were utilized to comprehensively investigate their binding affinity to dectin-1 and cytokine-inducing in macrophages. Hydroxylated polymers exhibited a high binding affinity for dectin-1, similar to that of schizophyllan, whereas the polymer composed of only saccharyl monomers did not bind to dectin-1. Further, when administered to macrophage RAW264 cells, polymers with branched and hydrophobic polymer backbones exhibited strong cytokine-inducing activities. Moreover, the results revealed that the essential factors for cytokine induction include the branches of ß-1,3-glucans, high (tens of thousands) molecular weights, and hydrophobicity. The results suggests that artificial polymers comprising these factors exhibit immunostimulating activity and could be developed as therapeutic agents.


Assuntos
Glucanos , beta-Glucanas , Glucanos/química , Polímeros , beta-Glucanas/química , Citocinas/metabolismo , Lectinas Tipo C
16.
Virulence ; 15(1): 2329573, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38511558

RESUMO

Extracellular vesicles (EVs) are membrane-enclosed nanoparticles that transport several biomolecules and are involved in important mechanisms and functions related to the pathophysiology of fungal diseases. EVs from Paracoccidioides brasiliensis, the main causative agent of Paracoccidioidomycosis (PCM), modulate the immune response of macrophages. In this study, we assessed the EVs proteome from a virulent P. brasiliensis isolated from granulomatous lesions and compared their immunomodulatory ability with EVs isolated from the fungus before the animal passage (control EVs) when challenging macrophages and dendritic cells (DCs). Proteome showed that virulent EVs have a higher abundance of virulence factors such as GP43, protein 14-3-3, GAPDH, as well as virulence factors never described in PCM, such as aspartyl aminopeptidase and a SidJ analogue compared with control EVs. Virulent extracellular vesicles induced higher expression of TLR4 and Dectin-1 than control EVs in macrophages and dendritic cells (DCs). In opposition, a lower TLR2 expression was induced by virulent EVs. Additionally, virulent EVs induced lower expression of CD80, CD86 and TNF-α, but promoted a higher expression of IL-6 and IL-10, suggesting that EVs isolated from virulent P. brasiliensis-yeast promote a milder DCs and macrophage maturation. Herein, we showed that EVs from virulent fungi stimulated a higher frequency of Th1/Tc1, Th17, and Treg cells, which gives new insights into fungal extracellular vesicles. Taken together, our results suggest that P. brasiliensis utilizes its EVs as virulence bags that manipulate the immune system in its favour, creating a milder immune response and helping with fungal evasion from the immune system.


Assuntos
Vesículas Extracelulares , Lectinas Tipo C , Paracoccidioides , Paracoccidioidomicose , Animais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteoma , Paracoccidioidomicose/microbiologia , Vesículas Extracelulares/metabolismo , Fatores de Virulência
17.
Angiogenesis ; 27(2): 173-192, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38468017

RESUMO

C-type lectins, distinguished by a C-type lectin binding domain (CTLD), are an evolutionarily conserved superfamily of glycoproteins that are implicated in a broad range of physiologic processes. The group XIV subfamily of CTLDs are comprised of CD93, CD248/endosialin, CLEC14a, and thrombomodulin/CD141, and have important roles in creating and maintaining blood vessels, organizing extracellular matrix, and balancing pro- and anti-coagulative processes. As such, dysregulation in the expression and downstream signaling pathways of these proteins often lead to clinically relevant pathology. Recently, group XIV CTLDs have been shown to play significant roles in cancer progression, namely tumor angiogenesis and metastatic dissemination. Interest in therapeutically targeting tumor vasculature is increasing and the search for novel angiogenic targets is ongoing. Group XIV CTLDs have emerged as key moderators of tumor angiogenesis and metastasis, thus offering substantial therapeutic promise for the clinic. Herein, we review our current knowledge of group XIV CTLDs, discuss each's role in malignancy and associated potential therapeutic avenues, briefly discuss group XIV CTLDs in the context of two other relevant lectin families, and offer future direction in further elucidating mechanisms by which these proteins function and facilitate tumor growth.


Assuntos
Lectinas Tipo C , Neoplasias , Humanos , 60489 , Neovascularização Patológica/patologia , Neoplasias/tratamento farmacológico , Transdução de Sinais , Antígenos de Neoplasias , Antígenos CD
18.
Carbohydr Polym ; 332: 121904, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431411

RESUMO

Glucan is a natural polysaccharide widely distributed in cereals and microorganisms that has various biological activities, including immunomodulatory, anti-infective, anti-inflammatory, and antitumor activities. In addition to wide applications in the broad fields of food, healthcare, and biomedicines, glucans hold promising potential as drug delivery carrier materials or ligands. Specifically, glucan microparticles or yeast cell wall particles are naturally enclosed vehicles with an interior cavity that can be exploited to carry and deliver drug payloads. The biological activities and targeting capacities of glucans depend largely on the recognition of glucan moieties by receptors such as dectin-1 and complement receptor 3, which are widely expressed on the cell membranes of mononuclear phagocytes, dendritic cells, neutrophils, and some lymphocytes. This review summarizes the chemical structures, sources, fundamental properties, extraction methods, and applications of these materials, with an emphasis on drug delivery. Glucans are utilized mainly as vaccine adjuvants, targeting ligands and as carrier materials for various drug entities. It is believed that glucans and glucan microparticles may be useful for the delivery of both small-molecule and macromolecular drugs, especially for potential treatment of immune-related diseases.


Assuntos
Glucanos , beta-Glucanas , Glucanos/metabolismo , beta-Glucanas/química , Saccharomyces cerevisiae/metabolismo , Neutrófilos , Proteínas de Transporte , Lectinas Tipo C/metabolismo
19.
Respir Res ; 25(1): 119, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459541

RESUMO

BACKGROUND: The pattern recognition receptor Dectin-1 was initially discovered to play a pivotal role in mediating pulmonary antifungal immunity and promoting neutrophil-driven inflammation. Recent studies have revealed that Dectin-1 is overexpressed in asthma, but the specific mechanism remains elusive. Additionally, Dectin-1 has been implicated in promoting pyroptosis, a hallmark of severe asthma airway inflammation. Nevertheless, the involvement of the non-classical pyroptosis signal caspase-11/4 and its upstream regulatory mechanisms in asthma has not been completely explored. METHODS: House dust mite (HDM)-induced mice was treated with Dectin-1 agonist Curdlan, Dectin-1 inhibitor Laminarin, and caspase-11 inhibitor wedelolactone separately. Subsequently, inflammatory cells in bronchoalveolar lavage fluid (BALF) were analyzed. Western blotting was performed to measure the protein expression of caspase-11 and gasdermin D (GSDMD). Cell pyroptosis and the expression of chemokine were detected in vitro. The correlation between Dectin-1 expression, pyroptosis factors and neutrophils in the induced sputum of asthma patients was analyzed. RESULTS: Curdlan appeared to exacerbate neutrophil airway inflammation in asthmatic mice, whereas wedelolactone effectively alleviated airway inflammation aggravated by Curdlan. Moreover, Curdlan enhanced the release of caspase-11 activation fragments and N-terminal fragments of gasdermin D (GSDMD-N) stimulated by HDM both in vivo or in vitro. In mouse alveolar macrophages (MH-S cells), Curdlan/HDM stimulation resulted in vacuolar degeneration and elevated lactate dehydrogenase (LDH) release. In addition, there was an upregulation of neutrophil chemokines CXCL1, CXCL3, CXCL5 and their receptor CXCR2, which was suppressed by wedelolactone. In asthma patients, a positive correlation was observed between the expression of Dectin-1 on macrophages and caspase-4 (the human homology of caspase-11), and the proportion of neutrophils in induced sputum. CONCLUSION: Dectin-1 activation in asthma induced caspase-11/4 mediated macrophage pyroptosis, which subsequently stimulated the secretion of chemokines, leading to the exacerbation of airway neutrophil inflammation.


Assuntos
Asma , Lectinas Tipo C , Neutrófilos , Animais , Humanos , Camundongos , Asma/metabolismo , Caspases/metabolismo , Quimiocinas/metabolismo , Gasderminas , Inflamação/metabolismo , Pulmão/metabolismo , Macrófagos/metabolismo , Neutrófilos/metabolismo , Pyroglyphidae , Piroptose
20.
Toxicon ; 241: 107663, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423218

RESUMO

Deinagkistrodon acutus is a medically important pitviper inhabiting mainly South China and Taiwan. The hemorrhagic effects of its envenoming are compatible to its venom, which is abundant in metalloproteases (svMPs) and C-type lectin-like proteins. In this study, we investigated geographic variations in the venom of D. acutus collected from Taiwan and four Mainland Chinese provinces: Fujian, Jiangxi, Anhui, and Hunan. The variations were assessed through high-performance liquid chromatography, non-metric multidimensional scaling analysis, gel electrophoresis, and enzyme-linked immunosorbent assay (ELISA) with a monospecific antivenom (DaMAV) generated against the Taiwanese D. acutus venom, and discussed based on venom-protein sequences in databases and literature related to D. acutus venom. Additionally, the cross-reactivity of DaMAV against Crotalus horridus and Calloselasma rhodostoma venoms was investigated. We noted differential abundances of D. acutus venom metalloproteases, C-type lectin-like proteins, and phospholipase A2, along with point mutations and selective expression of serine protease isoforms. The ELISA results revealed that the venom from Taiwan was more reactive toward Taiwanese DaMAV than the four Mainland Chinese venoms, consistent with chromatographic profile differences, whereas C. horridus venom presented moderate cross-reactivity with DaMAV. The observed immunoreactivities of these venom with DaMAV can be attributed to the high prevalence of their PIII-svMPs, which are the dominant antigens, and the conservation of PIII-svMP epitopes.


Assuntos
Antivenenos , Crotalinae , Crotalus , 60573 , Peçonhas , Animais , Taiwan , Ensaio de Imunoadsorção Enzimática , Eletroforese , Metaloproteases/análise , Biologia Computacional , Lectinas Tipo C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...